The fate of nano-silver in aqueous media.

نویسندگان

  • Blake J Plowman
  • Kristina Tschulik
  • Emily Walport
  • Neil P Young
  • Richard G Compton
چکیده

Silver nanoparticles offer highly attractive properties for many applications, however concern has been raised over the possible toxicity of this material in environmental systems. While it is thought that the release of Ag(+) can play a crucial role in this toxicity, the mechanism by which the oxidative dissolution of nano-silver occurs is not yet understood. Here we address this through the electrochemical analysis of gold-core silver-shell nanoparticles in various solutions. This novel method allows the direct quantification of silver dissolution by normalisation to the gold core signal. This is shown to be highly effective at discriminating between silver dissolution and the loss of nanoparticles from the electrode surface. We evidence through this rigorous approach that the reduction of O2 drives the dissolution of nano-silver, while in the presence of Cl(-) this dissolution is greatly inhibited. This work is extended to the single nanoparticle level using nano-impact experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Facile and Green Biosynthesis of Silver Nanostructures by Aqueous Extract of Suaeda Acuminata after Microwave Assisted Extraction

In the present study, a simple, efficient and fast synthetic strategy was reported for the green biosynthesis of silver nanostructures (i.e. nanoroads and nanoparticles) by the extract of Suaeda Acuminata plant, without any catalyst, template or surfactant. Aqueous extracts were obtained by maceration and microwave assisted extraction (MAE) methods. In MAE procedure, the effec...

متن کامل

Stability Modification of SPR Silver Nano-Chips by Alkaline Condensation of Aminopropyltriethoxysilane

The Silver SPR chip was modified by alkaline-silane condensation with aminopropyltriethoxysilane (APTES) in NaOH aqueous solution at different times. Silver sputtered slides coated with APTES were immersed in NaOH solution, enabling us to produce silver surfaces homogeneously covered with APTES. The surface properties of grafted APTES on sputtered silver surface as a occasion of time were studi...

متن کامل

Green synthesis of Silver nanoparticles using the aqueous extract of Prangos ferulaceae leaves

Nowadays, green chemistry and its advantages are generating interest of researchers toward ecofriendly biosynthesis of the metallic nanoparticles. In this research, a rapid, simple and green method was developed for the synthesis of silver nanoparticles using aqueous extract of Prangos ferulaceae leaves. The synthesized silver nanoparticles were characterized by UV-Vis spectroscopy, sc...

متن کامل

Green synthesis of Silver nanoparticles using the aqueous extract of Prangos ferulaceae leaves

Nowadays, green chemistry and its advantages are generating interest of researchers toward ecofriendly biosynthesis of the metallic nanoparticles. In this research, a rapid, simple and green method was developed for the synthesis of silver nanoparticles using aqueous extract of Prangos ferulaceae leaves. The synthesized silver nanoparticles were characterized by UV-Vis spectroscopy, sc...

متن کامل

The Fluorescence Behavior and Stability ‎of AgNPs Synthesized by Juglans Regia ‎Green Husk Aqueous Extract

   Particles with the size of 1-100 nm are known as nanoparticles (NPs). The widespread use of silver NPs (AgNPs) makes it familiar in different industries. They have unique properties as a result of their high surface to volume ratio, although aggregation of NPs interferes with their functions. This phenomenon has several side effects on the environment, the amount of which may depend on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 29  شماره 

صفحات  -

تاریخ انتشار 2015